Analisis sentimen climate change menggunakan support vector machine
DOI:
https://doi.org/10.31571/saintek.v14i1.8674Keywords:
algoritma, climate change, isu, support vector machine, text miningAbstract
Perubahan iklim adalah isu global dengan dampak signifikan pada berbagai aspek kehidupan. Tujuan penelitian ini melakukan analisis sentimen terhadap data publik dan mengevaluasi performa model dalam klasifikasi analisis sentimen. Jumlah data teks terkait isu ini terus meningkat, sehingga text mining menjadi pendekatan penting untuk menganalisis data secara mendalam. Algoritma seperti Support Vector Machine (SVM) memberikan solusi inovatif untuk klasifikasi dokumen dan analisis sentimen dalam domain ini. Tahapan penelitian dimulai dari pengumpulan data, pengelolaan data, pre-processing data, pembobotan kata (TF-IDF), analisis sentimen dengan model Support vector machine, serta evaluasi hasil. Support Vector Machine dengan rasio 80:20 menunjukkan performa lebih tinggi dengan akurasi 0,88, precision (weighted avg) 0,89, recall (weighted avg) 0,88, Nilai K= 10, F1-score (weighted avg) 0,88, ROC-AUC 0,99 menunjukkan kinerja model baik.
Downloads
References
Arifin, N., Enri, U., & Sulistiyowati, N. (2021). Penerapan algoritma support vector machine (SVM) dengan TF-IDF N-Gram untuk text classification. STRING (Satuan Tulisan Riset Dan Inovasi Teknologi), 6, 129. https://doi.org/10.30998/string.v6i2.10133
Agustina, D. A., Subanti, S., & Zukhronah, E. (2021). Implementasi text mining pada analisis sentimen pengguna twitter terhadap marketplace di Indonesia Menggunakan Algoritma Support Vector Machine. Indonesian Journal of Applied Statistics, 3(2), 109-122.
Chintalapudi, N., Battineni, G., Canio, M. Di, Sagaro, G. G., & Amenta, F. (2021). Text mining with sentiment analysis on seafarers’ medical documents. International Journal of Information Management Data Insights, 1(1). https://doi.org/10.1016/j.jjimei.2020.100005
Fikri, M. I., Sabrila, T. S., & Azhar, Y. (2020). Perbandingan metode naïve bayes dan support vector machine pada analisis sentimen twitter. SMATIKA JURNAL: STIKI Informatika Jurnal, 10(02), Article 02. https://doi.org/10.32664/smatika.v10i02.455
Firdaus, A. F., & Firdaus, W. I. (2021). Text Mining Dan Pola Algoritma Dalam Penyelesaian Masalah Informasi:(Sebuah Ulasan). JUPITER (Jurnal Penelitian Ilmu dan Teknologi Komputer), 13(1), 66-78.
Grotenhuis, Z., Mosteiro, P. J., & Leeuwenberg, A. M. (2024). Modest performance of text mining to extract health outcomes may be almost sufficient for high-quality prognostic model development. Computers in Biology and Medicine, 170. https://doi.org/10.1016/j.compbiomed.2024.108014
Hakim, L., Dalimunthe, M. V., Danuputri, C., & Widyaningrum, D. (2024). Sentimen analisis mengenai polusi udara menggunakan algoritma support vector machine dan random forest. Jurnal Ilmiah FIFO, 15(2), 91. https://doi.org/10.22441/fifo.2023.v15i2.001
Hakim, S. N., Putra, A. J., & Khasanah, A. U. (2021). Sentiment analysis on myindihome user reviews using support vector machine and naïve bayes classifier method. International Journal of Industrial Optimization, 2(2), 151–164.
Hendrawan, G. N., & Kusniyati, H. (2024). Evaluasi Performa Naive Bayes dan SVM dalam Analisis Sentimen Kendaraan Listrik di Media Sosial Twitter. CESS (Journal of Computer Engineering, System and Science), 9(1), 299–313. https://doi.org/10.24114/cess.v9i1.54086
Hermawan, A., Jowensen, I., Junaedi, J., & Edy. (2023). Implementasi text-mining untuk analisis sentimen pada twitter dengan algoritma support vector machine. JST (Jurnal Sains Dan Teknologi), 12(1), 129–137. https://doi.org/10.23887/jstundiksha.v12i1.52358
Irawanto, I., Widodo, C., Hasanah, A., Dharma Kusumah, P. A., Kusrini, K., & Kusnawi, K. (2023). Sentiment analysis and classification of forest fires in Indonesia. ILKOM Jurnal Ilmiah, 15(1), 175–185. https://doi.org/10.33096/ilkom.v15i1.1337.175-185
Noviana, R., & Rasal, I. (2023). Penerapan algoritma naive bayes dan svm untuk analisis sentimen boy band bts pada media sosial twitter. Jurnal Teknik Dan Science, 2(2), 51–60. https://doi.org/10.56127/jts.v2i2.791
Noviansyah, M. R., Rismawan, T., & Midyanti, D. M. (2018). Penerapan data mining menggunakan metode k-nearest neighbor untuk klasifikasi indeks cuaca kebakaran berdasarkan data aws (automatic weather station) (studi kasus: Kabupaten Kubu Raya). Coding: Jurnal Komputer Dan Aplikasi, 6(2), Article 2. https://doi.org/10.26418/coding.v6i2.26672
Novianti, D. N., Shiddieq, D. F., Roji, F. F., & Susilawati, W. (2024). Komparasi algoritma support vector machine dan naïve bayes untuk analisis sentimen pada metaverse. MALCOM: Indonesian Journal of Machine Learning and Computer Science, 4(1), 231–239. https://doi.org/10.57152/malcom.v4i1.1061
Nurwanda, F., & Rizkiani, J. R. (2023). Perbandingan metode naive bayes classifier dan support vector machine pada analisis sentimen twitter topik lifestyle. Jurnal Ilmiah Wahana Pendidikan, 9(21), 314–323. https://doi.org/10.5281/zenodo.10077023
Penalun, F. E., Hermawan, A., & Avianto, D. (2023). Perbandingan random forest regression dan support vector regression pada prediksi laju penguapan. JURNAL FASILKOM, 13(02), Article 02. https://doi.org/10.37859/jf.v13i02.4976
Purnajaya, A. R., Lieputra, V., Tayanto, V., & Salim, J. G. (2022). Implementasi text mining untuk mengetahui opini masyarakat tentang climate change. Journal of Information System and Technology, 03(03), 320–328.
Putra, R. E., Kalista, M., & Setianingsih, C. (2023). Klasifikasi prediksi kualitas udara Menggunakan metode Support Vector Machine (SVM). eProceedings of Engineering, 10(4).
Rangarjan, P. K., Gurusamy, B. M., Muthurasu, G., Mohan, R., Pallavi, G., Vijayakumar, S., & Altalbe, A. (2024). The social media sentiment analysis framework: Deep learning for sentiment analysis on social media. International Journal of Electrical and Computer Engineering, 14(3), 3394–3405. https://doi.org/10.11591/ijece.v14i3.pp3394-3405
Singgalen, Y. A. (2024). Sentiment classification of climate change and tourism content using support vector machine. Journal of Computer System and Informatics (JoSYC), 5(2), 357–367. https://doi.org/10.47065/josyc.v5i2.4908
Sumantiawan, D. I., Suseno, J. E., & Syafei, W. A. (2023). Sentiment analysis of customer reviews using support vector machine and smote-tomek links for identify customer satisfaction. J. Sistem Info. Bisnis, 13(1), 1–9. https://doi.org/10.21456/vol13iss1pp1-9
Wahyuningtias, P., Warih Utami, H., Ahda Raihan, U., Nur Hanifah, H., & Nicholas Adanson, Y. (2022). Comparison of random forest and support vector machine methods on twitter sentiment analysis (case study: internet selebgram rachel vennya escape from quarantine). Jurnal Teknik Informatika (JUTIF), 3(1), 141–145. https://doi.org/10.20884/1.jutif.2022.3.1.168
Yunanda, V. D., & Hendrastuty, N. (2024). Perbandingan kernel polynomial dan rbf pada algoritma svm untuk analisis sentimen skincare di Indonesia. Jurnal Media Informatika Budidarma, 8(2), 726-735. https://doi.org/10.30865/mib.v8i2.7425
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Putri Yuli Utami, Syarifah Putri Agustini Alkadri, Mega Otafyani

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
In submitting the manuscript to the journal, the authors certify that:
- They are authorized by their co-authors to enter into these arrangements.
- The work described has not been formally published before, except in the form of an abstract or as part of a published lecture, review, thesis, or overlay journal. Please also carefully read Jurnal Pendidikan Informatika dan Sains Posting Your Article Policy at http://journal.ikippgriptk.ac.id/index.php/saintek/about/submissions#onlineSubmissions
- That it is not under consideration for publication elsewhere,
- That its publication has been approved by all the author(s) and by the responsible authorities – tacitly or explicitly – of the institutes where the work has been carried out.
- They secure the right to reproduce any material that has already been published or copyrighted elsewhere.
- They agree to the following license and copyright agreement.
Copyright
Authors who publish with Jurnal Pendidikan Informatika dan Sains agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (CC BY-SA 4.0) that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.